Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Int J Biol Macromol ; 265(Pt 2): 131037, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521300

RESUMO

A growing interest has arisen in recreating real meat by mimicking its texture characteristics and muscle fiber structure. Our previous work successfully created meat analog fiber based on soybean protein isolate (SPI) and sodium alginate (SA) with the wet-spinning method. In this work, we analyzed the microstructure, texture profile, and water retainability of the assembled plant-based whole muscle meat analog (PMA) made of SPI/SA-based meat analog fiber and systematically studied the effect of different combinations and contents of transglutaminase (TG), salt, and soybean oil on the rheological behavior of the formulated adhesive. The estimated optimal condition that has the most similar texture characteristic with real chicken breast meat is: for every 1:1 mass ratio of simulated plant meat fibers to the adhesive, add 0.1 % TG enzyme addition in the adhesive and 100 mM NaCl addition. The physical behavior of PMA during cryopreservation was investigated through freeze-thaw cycles and freezing times. The addition of a small amount of oil and salt can efficiently prevent the PMA through freezing conditions which is comparable with the addition of D-Trehalose (TD). Overall, this study not only created a plant-based whole muscle meat analog product that is similar in texture to real chicken breast meat but also provided a new direction for constructing fiber-rich structure protein-based muscle meat analogs and their further commercialization.


Assuntos
60450 , Proteínas de Soja , Congelamento , Músculos , Carne/análise , Proteínas Musculares , Alginatos , Cloreto de Sódio/química
2.
Food Chem ; 447: 138904, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38447238

RESUMO

To enhance the gel properties of PSE (pale, soft, and exudative)-like chicken meat protein isolate (PPI), the effect of peanut, corn, soybean, and sunflower oils on the gel properties of PPI emulsion gels was investigated. Vegetable oils improved emulsion stability and gel strength and enhanced viscosity and elasticity. The gel strength of the PPI-sunflower oil emulsion gel increased by 163.30 %. The thermal denaturation temperature and enthalpy values were increased. They decreased the particle size of PPI emulsion (P < 0.05) and changed the three-dimensional network structure of PPI emulsion gels from reticular to sheet with a smooth surface and pore-reduced lamellar. They elevated the content of immobile water PPI emulsion gels, decreased the α-helix and ß-turn, and increased the ß-sheet and random coil. Vegetable oil improved the gel properties of PPI in the following order: sunflower oil > soybean oil > corn oil ≈ peanut oil > control group.


Assuntos
Galinhas , Óleos de Plantas , Animais , Emulsões/química , Proteínas de Carne , Óleo de Girassol , Géis/química , Reologia
3.
Inflamm Res ; 73(4): 531-539, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38498178

RESUMO

Metabolic remodeling is a key feature of macrophage activation and polarization. Recent studies have demonstrated the role of tricarboxylic acid (TCA) cycle metabolites in the innate immune system. In the current review, we summarize recent advances in the metabolic reprogramming of the TCA cycle during macrophage activation and polarization and address the effects of these metabolites in modulating macrophage function. Deciphering the crosstalk between the TCA cycle and the immune response might provide novel potential targets for the intervention of immune reactions and favor the development of new strategies for the treatment of infection, inflammation, and cancer.


Assuntos
Ciclo do Ácido Cítrico , Macrófagos , Ciclo do Ácido Cítrico/fisiologia , Macrófagos/metabolismo
4.
Nat Commun ; 15(1): 2526, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514666

RESUMO

ß-Cell dysfunction and ß-cell loss are hallmarks of type 2 diabetes (T2D). Here, we found that trimethylamine N-oxide (TMAO) at a similar concentration to that found in diabetes could directly decrease glucose-stimulated insulin secretion (GSIS) in MIN6 cells and primary islets from mice or humans. Elevation of TMAO levels impairs GSIS, ß-cell proportion, and glucose tolerance in male C57BL/6 J mice. TMAO inhibits calcium transients through NLRP3 inflammasome-related cytokines and induced Serca2 loss, and a Serca2 agonist reversed the effect of TMAO on ß-cell function in vitro and in vivo. Additionally, long-term TMAO exposure promotes ß-cell ER stress, dedifferentiation, and apoptosis and inhibits ß-cell transcriptional identity. Inhibition of TMAO production improves ß-cell GSIS, ß-cell proportion, and glucose tolerance in both male db/db and choline diet-fed mice. These observations identify a role for TMAO in ß-cell dysfunction and maintenance, and inhibition of TMAO could be an approach for the treatment of T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Glucose/farmacologia , Metilaminas/farmacologia , Transdução de Sinais , Insulina/farmacologia
5.
J Ethnopharmacol ; 325: 117768, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38253275

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Atherosclerosis (AS), a lipid-induced inflammatory condition of the arteries, is a primary contributor to atherosclerotic cardiovascular diseases including stroke. Arctium lappa L. leaf (ALL), an edible and medicinal herb in China, has been documented and commonly used for treating stroke since the ancient times. However, the elucidations on its anti-AS effects and molecular mechanism remain insufficient. AIM OF THE STUDY: To investigate the AS-ameliorating effects and the underlying mechanism of action of an ethanolic extract of leaves of Arctium lappa L. (ALLE). MATERIALS AND METHODS: ALLE was reflux extracted using with 70% ethanol. An HPLC method was established to monitor the quality of ALLE. High fat diet (HFD) and vitamin D3-induced experimental AS in rats were used to determine the in vivo effects; and oxidized low-density lipoprotein-induced RAW264.7 macrophage foam cells were used for in vitro assays. Simvatatin was used as positive control. Biochemical assays were implemented to ascertain the secretions of lipids and pro-inflammatory mediators. Haematoxylin-eosin (H&E) and Oil red O stains were employed to assess histopathological alterations and lipid accumulation conditions, respectively. CCK-8 assays were used to measure cytotoxicity. Immunoblotting assay was conducted to measure protein levels. RESULTS: ALLE treatment significantly ameliorated lipid deposition and histological abnormalities of aortas and livers in AS rats; improved the imbalances of serum lipids including total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C); notably attenuated serum concentrations of inflammation-associated cytokines/molecules including TNF-α, IL-6, IL-1ß, VCAM-1, ICAM-1and MMP-9. Mechanistic studies demonstrated that ALLE suppressed the phosphorylation/activation of PI3K, Akt and NF-κB in AS rat aortas and in cultured foam cells. Additionally, the PI3K agonist 740Y-P notably reversed the in vitro inhibitory effects of ALLE on lipid deposition, productions of TC, TNF-α and IL-6, and protein levels of molecules of PI3K/Akt and NF-κB singnaling pathways. CONCLUSIONS: ALLE ameliorates HFD- and vitamin D3-induced experimental AS by modulating lipid metabolism and inflammatory responses, and underlying mechanisms involves inhibition of the PI3K/Akt and NF-κB singnaling pathways. The findings of this study provide scientific justifications for the traditional application of ALL in managing atherosclerotic diseases.


Assuntos
Arctium , Aterosclerose , Fragmentos de Peptídeos , Receptores do Fator de Crescimento Derivado de Plaquetas , Acidente Vascular Cerebral , Ratos , Animais , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fosfatidilinositol 3-Quinases/metabolismo , Metabolismo dos Lipídeos , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Aterosclerose/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Lipídeos , Colesterol/farmacologia , Etanol/farmacologia , Lipoproteínas LDL/metabolismo , Colecalciferol/farmacologia , Colecalciferol/uso terapêutico
6.
Nat Commun ; 15(1): 203, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172124

RESUMO

Dysregulated hematopoietic niches remodeled by leukemia cells lead to imbalances in immunological mediators that support leukemogenesis and drug resistance. Targeting immune niches may ameliorate disease progression and tyrosine kinase inhibitor (TKI) resistance in Philadelphia chromosome-positive B-ALL (Ph+ B-ALL). Here, we show that T helper type 17 (Th17) cells and IL-17A expression are distinctively elevated in Ph+ B-ALL patients. IL-17A promotes the progression of Ph+ B-ALL. Mechanistically, IL-17A activates BCR-ABL, IL6/JAK/STAT3, and NF-kB signalling pathways in Ph+ B-ALL cells, resulting in robust cell proliferation and survival. In addition, IL-17A-activated Ph+ B-ALL cells secrete the chemokine CXCL16, which in turn promotes Th17 differentiation, attracts Th17 cells and forms a positive feedback loop supporting leukemia progression. These data demonstrate an involvement of Th17 cells in Ph+ B-ALL progression and suggest potential therapeutic options for Ph+ B-ALL with Th17-enriched niches.


Assuntos
Cromossomo Filadélfia , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Proteínas de Fusão bcr-abl/genética , Interleucina-17/genética , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Doença Aguda
7.
Huan Jing Ke Xue ; 45(1): 555-566, 2024 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-38216504

RESUMO

Agricultural utilization of reclaimed water is considered to be an effective way to solve water shortage and reduce water environmental pollution. Silicon fertilizer can improve crop yield and quality and enhance crop resistance. The effect of foliar spray with silicon fertilizer on phyllosphere microbial communities remains lacking. In this study, a pot experiment was conducted to explore the effects of different types of silicon fertilizer on the composition and diversity of a phyllosphere bacterial community and the abundances of related functional genes in rice irrigated with reclaimed water. The results showed that Firmicutes, Proteobacteria, Actinobacteriota, Bacteroidota, and Verrucomicrobiota dominated the phyllosphere bacteria of rice. The relative abundance of Bacillus was higher than that of other treatments in RIS3. Reclaimed water irrigation significantly increased the relative abundances of the potential pathogens Pantoea and Enterobacter. The unclassified bacteria were also an important part of the bacterial community in the rice phyllosphere. Bacillus, Exiguobacterium, Aeromonas, and Citrobacter were significantly enriched by silicon fertilizer treatments. Functional prediction analysis showed that indicator species were mainly involved in metabolism and degradation functions, and the predicted functional groups of phyllosphere bacteria were attributed to chemoheterotrophy, aerobic chemoheterotrophy, nitrate reduction, and fermentation. Quantitative PCR results showed that AOA, AOB, and nifH genes were at low abundance levels in all treatments, and nirK genes was not significantly different among treatments. These results contribute to the in-depth understanding of the effects of foliar spray silicon fertilizer on the bacterial community structure and diversity of rice phyllosphere and provide a theoretical basis for the application of silicon fertilizer in reclaimed water irrigation agriculture.


Assuntos
Bacillus , Oryza , Fertilizantes/análise , Silício/farmacologia , Solo/química , Água/análise , Bactérias/genética , Microbiologia do Solo
8.
EMBO J ; 43(4): 507-532, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38191811

RESUMO

Metabolic syndrome combines major risk factors for cardiovascular disease, making deeper insight into its pathogenesis important. We here explore the mechanistic basis of metabolic syndrome by recruiting an essential patient cohort and performing extensive gene expression profiling. The mitochondrial fatty acid metabolism enzyme acyl-CoA synthetase medium-chain family member 3 (ACSM3) was identified to be significantly lower expressed in the peripheral blood of metabolic syndrome patients. In line, hepatic ACSM3 expression was decreased in mice with metabolic syndrome. Furthermore, Acsm3 knockout mice showed glucose and lipid metabolic abnormalities, and hepatic accumulation of the ACSM3 fatty acid substrate lauric acid. Acsm3 depletion markedly decreased mitochondrial function and stimulated signaling via the p38 MAPK pathway cascade. Consistently, Acsm3 knockout mouse exhibited abnormal mitochondrial morphology, decreased ATP contents, and enhanced ROS levels in their livers. Mechanistically, Acsm3 deficiency, and lauric acid accumulation activated nuclear receptor Hnf4α-p38 MAPK signaling. In line, the p38 inhibitor Adezmapimod effectively rescued the Acsm3 depletion phenotype. Together, these findings show that disease-associated loss of ACSM3 facilitates mitochondrial dysfunction via a lauric acid-HNF4a-p38 MAPK axis, suggesting a novel therapeutic vulnerability in systemic metabolic dysfunction.


Assuntos
Ácidos Láuricos , Síndrome Metabólica , Humanos , Camundongos , Animais , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Fígado/metabolismo , Ácidos Graxos/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Coenzima A Ligases/farmacologia
9.
Sci Transl Med ; 15(726): eade4113, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38091408

RESUMO

Tumor-initiating cells (TICs) reprogram their metabolic features to meet their bioenergetic, biosynthetic, and redox demands. Our previous study established a role for wild-type isocitrate dehydrogenase 1 (IDH1WT) as a potential diagnostic and prognostic biomarker for non-small cell lung cancer (NSCLC), but how IDH1WT modulates NSCLC progression remains elusive. Here, we report that IDH1WT activates serine biosynthesis by enhancing the expression of phosphoglycerate dehydrogenase (PHGDH) and phosphoserine aminotransferase 1 (PSAT1), the first and second enzymes of de novo serine synthetic pathway. Augmented serine synthesis leads to GSH/ROS imbalance and supports pyrimidine biosynthesis, maintaining tumor initiation capacity and enhancing gemcitabine chemoresistance. Mechanistically, we identify that IDH1WT interacts with and stabilizes PHGDH and fragile X-related protein-1 (FXR1) by impeding their association with the E3 ubiquitin ligase parkin by coimmunoprecipitation assay and proximity ligation assay. Subsequently, stabilized FXR1 supports PSAT1 mRNA stability and translation, as determined by actinomycin D chase experiment and in vitro translation assay. Disrupting IDH1WT-PHGDH and IDH1WT-FXR1 interactions synergistically reduces NSCLC stemness and sensitizes NSCLC cells to gemcitabine and serine/glycine-depleted diet therapy in lung cancer xenograft models. Collectively, our findings offer insights into the role of IDH1WT in serine metabolism, highlighting IDH1WT as a potential therapeutic target for eradicating TICs and overcoming gemcitabine chemoresistance in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Gencitabina , Resistencia a Medicamentos Antineoplásicos , Serina/metabolismo , Vias Biossintéticas , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/metabolismo , Isocitrato Desidrogenase/metabolismo
10.
Plant Direct ; 7(12): e551, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38099080

RESUMO

Tobacco wildfire disease caused by Pseudomonas syringae pv. tabaci is one of the most destructive foliar bacterial diseases occurring worldwide. However, the effect of wildfire disease on cigar tobacco leaves has not been clarified in detail. In this study, the differences in microbiota and chemical factors between wildfire disease-infected leaves and healthy leaves were characterized using high-throughput Illumina sequencing and a continuous-flow analytical system, respectively. The results demonstrated significant alterations in the structure of the phyllosphere microbial community in response to wildfire disease, and the infection of P. syringae pv. tabaci led to a decrease in bacterial richness and diversity. Furthermore, the content of nicotine, protein, total nitrogen, and Cl- in diseased leaves significantly increased by 47.86%, 17.46%, 20.08%, and 72.77% in comparison to healthy leaves, while the levels of total sugar and reducing sugar decreased by 59.59% and 70.0%, respectively. Notably, the wildfire disease had little effect on the content of starch and K+. Redundancy analysis revealed that Pseudomonas, Staphylococcus, Cladosporium, and Wallemia displayed positive correlations with nicotine, protein, total nitrogen, Cl- and K+ contents, while Pantoea, Erwinia, Sphingomonas, Terrisporobacter, Aspergillus, Alternaria, Sampaiozyma, and Didymella displayed positive correlations with total sugar and reducing sugar contents. Brevibacterium, Brachybacterium, and Janibacter were found to be enriched in diseased leaves, suggesting their potential role in disease suppression. Co-occurrence network analysis indicated that positive correlations were prevalent in microbial networks, and the bacterial network of healthy tobacco leaves exhibited greater complexity compared to diseased tobacco leaves. This study revealed the impact of wildfire disease on the microbial community and chemical compositions of tobacco leaves and provides new insights for the biological control of tobacco wildfire disease.

11.
Molecules ; 28(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138440

RESUMO

Currently, skin injuries have a serious impact on people's lives and socio-economic stress. Shikonin, a naphthoquinone compound derived from the root of the traditional Chinese medicine Shikonin, has favorable biological activities such as anti-inflammatory, antibacterial, immunomodulatory, anticancer, and wound-healing-promoting pharmacological activities. It has been reported that Shikonin can be used for repairing skin diseases due to its wide range of pharmacological effects. Moreover, the antimicrobial activity of Shikonin can play a great role in food and can also reduce the number of pathogenic bacteria in food. This paper summarizes the research on the pharmacological effects of Shikonin in recent years, as well as research on the mechanism of action of Shikonin in the treatment of certain skin diseases, to provide certain theoretical references for the clinical application of Shikonin, and also to provides research ideas for the investigation of the mechanism of action of Shikonin in other skin diseases.


Assuntos
Naftoquinonas , Dermatopatias , Humanos , Anti-Inflamatórios/farmacologia , Naftoquinonas/farmacologia , Naftoquinonas/uso terapêutico , Medicina Tradicional Chinesa , Dermatopatias/tratamento farmacológico
12.
Nat Commun ; 14(1): 7643, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996411

RESUMO

White adipose tissue browning can promote lipid burning to increase energy expenditure and improve adiposity. Here, we show that Slc35d3 expression is significantly lower in adipose tissues of obese mice. While adipocyte-specific Slc35d3 knockin is protected against diet-induced obesity, adipocyte-specific Slc35d3 knockout inhibits white adipose tissue browning and causes decreased energy expenditure and impaired insulin sensitivity in mice. Mechanistically, we confirm that SLC35D3 interacts with the NOTCH1 extracellular domain, which leads to the accumulation of NOTCH1 in the endoplasmic reticulum and thus inhibits the NOTCH1 signaling pathway. In addition, knockdown of Notch1 in mouse inguinal white adipose tissue mediated by orthotopic injection of AAV8-adiponectin-shNotch1 shows considerable improvement in obesity and glucolipid metabolism, which is more pronounced in adipocyte-specific Slc35d3 knockout mice than in knockin mice. Overall, in this study, we reveal that SLC35D3 is involved in obesity via NOTCH1 signaling, and low adipose SLC35D3 expression in obesity might be a therapeutic target for obesity and associated metabolic disorders.


Assuntos
Tecido Adiposo Marrom , Tecido Adiposo Branco , Obesidade , Receptores Notch , Animais , Camundongos , Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Dieta Hiperlipídica , Metabolismo Energético , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Transdução de Sinais , Receptores Notch/metabolismo
13.
Nat Commun ; 14(1): 7661, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996458

RESUMO

Elimination of cancer stem cells (CSCs) and reinvigoration of antitumor immunity remain unmet challenges for cancer therapy. Tumor-associated macrophages (TAMs) constitute the prominant population of immune cells in tumor tissues, contributing to the formation of CSC niches and a suppressive immune microenvironment. Here, we report that high expression of inhibitor of differentiation 1 (ID1) in TAMs correlates with poor outcome in patients with colorectal cancer (CRC). ID1 expressing macrophages maintain cancer stemness and impede CD8+ T cell infiltration. Mechanistically, ID1 interacts with STAT1 to induce its cytoplasmic distribution and inhibits STAT1-mediated SerpinB2 and CCL4 transcription, two secretory factors responsible for cancer stemness inhibition and CD8+ T cell recruitment. Reducing ID1 expression ameliorates CRC progression and enhances tumor sensitivity to immunotherapy and chemotherapy. Collectively, our study highlights the pivotal role of ID1 in controlling the protumor phenotype of TAMs and paves the way for therapeutic targeting of ID1 in CRC.


Assuntos
Neoplasias Colorretais , Macrófagos , Humanos , Macrófagos/metabolismo , Imunoterapia , Linfócitos T CD8-Positivos , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Neoplasias Colorretais/metabolismo , Linfócitos T/metabolismo , Microambiente Tumoral/genética , Proteína 1 Inibidora de Diferenciação/genética , Proteína 1 Inibidora de Diferenciação/metabolismo
14.
Nat Commun ; 14(1): 6833, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884540

RESUMO

Insulin resistance is associated with many pathological conditions, and an in-depth understanding of the mechanisms involved is necessary to improve insulin sensitivity. Here, we show that ZFYVE28 expression is decreased in insulin-sensitive obese individuals but increased in insulin-resistant individuals. Insulin signaling inhibits ZFYVE28 expression by inhibiting NOTCH1 via the RAS/ERK pathway, whereas ZFYVE28 expression is elevated due to impaired insulin signaling in insulin resistance. While Zfyve28 overexpression impairs insulin sensitivity and causes lipid accumulation, Zfyve28 knockout in mice can significantly improve insulin sensitivity and other indicators associated with insulin resistance. Mechanistically, ZFYVE28 colocalizes with early endosomes via the FYVE domain, which inhibits the generation of recycling endosomes but promotes the conversion of early to late endosomes, ultimately promoting phosphorylated insulin receptor degradation. This effect disappears with deletion of the FYVE domain. Overall, in this study, we reveal that ZFYVE28 is involved in insulin resistance by promoting phosphorylated insulin receptor degradation, and ZFYVE28 may be a potential therapeutic target to improve insulin sensitivity.


Assuntos
Endossomos , Resistência à Insulina , Insulina , Receptor de Insulina , Animais , Camundongos , Proteínas de Transporte/metabolismo , Endossomos/metabolismo , Insulina/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transdução de Sinais , Humanos , Obesidade
15.
Chem Asian J ; 18(22): e202300725, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37789733

RESUMO

This study reports an efficient and green one-step method for synthesizing thiophene-substituted ketones from 2-thiophenemethanol and ketones via dehydrogenative coupling using manganese complexes as catalysts. The manganese complex demonstrated a broad applicability under mild conditions and extended the range of usable substrates. Utilizing this strategy, we carried out an efficient and diverse reaction of ketones with 2-thiophenemethanol, and successfully synthesized a series of thiophene-substituted saturated ketones and α, ß-unsaturated ketones in good isolated yields.

16.
J Cell Physiol ; 238(11): 2692-2709, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37796139

RESUMO

Oxidative stress has been considered to be closely related to spaceflight-induced bone loss; however, mechanism is elusive and there are no effective countermeasures. Using cultured rat calvarial osteoblasts exposed to microgravity simulated by a random positioning machine, this study addressed the hypotheses that microgravity-induced shortening of primary cilia leads to oxidative stress and that primary cilium protection prevents oxidative stress and osteogenesis loss. Microgravity was found to induce oxidative stress (as represented by increased levels of reactive oxygen species (ROS) and malondialdehyde production, and decreased activities of antioxidant enzymes), which was perfectly replicated in osteoblasts growing in NG with abrogated primary cilia (created by transfection of an interfering RNA), suggesting the possibility that shortening of primary cilia leads to oxidative stress. Oxidative stress was accompanied by mitochondrial dysfunction (represented by increased mitochondrial ROS and decreased mitochondrial membrane potential) and intracellular Ca2+ overload, and the latter was found to be caused by increased activity of Ca2+ channel transient receptor potential vanilloid 4 (TRPV4), as also evidenced by TRPV4 agonist GSK1016790A-elicited Ca2+ influx. Supplementation of HC-067047, a specific antagonist of TRPV4, attenuated microgravity-induced mitochondrial dysfunction, oxidative stress, and osteogenesis loss. Although TRPV4 was found localized in primary cilia and expressed at low levels in NG, microgravity-induced shortening of primary cilia led to increased TRPV4 levels and Ca2+ influx. When primary cilia were protected by miR-129-3p overexpression or supplementation with a natural flavonoid moslosooflavone, microgravity-induced increased TRPV4 expression, mitochondrial dysfunction, oxidative stress, and osteogenesis loss were all prevented. Our data revealed a new mechanism that primary cilia function as a controller for TRPV4 expression. Microgravity-induced injury on primary cilia leads to increased expression and overactive channel of TRPV4, causing intracellular Ca2+ overload and oxidative stress, and primary cilium protection could be an effective countermeasure against microgravity-induced oxidative stress and loss of osteogenic potential of osteoblasts.


Assuntos
Cílios , Osteoblastos , Osteogênese , Estresse Oxidativo , Canais de Cátion TRPV , Ausência de Peso , Animais , Ratos , Cílios/metabolismo , Osteoblastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo , Células Cultivadas , Morfolinas/farmacologia , Pirróis/farmacologia , Gravitação
17.
Front Immunol ; 14: 1220100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662954

RESUMO

Background: Gliomas, the most prevalent primary malignant tumors of the central nervous system in adults, exhibit slow growth in lower-grade gliomas (LGG). However, the majority of LGG cases progress to high-grade gliomas, posing challenges for prognostication. The tumor microenvironment (TME), characterized by telomere-related genes and immune cell infiltration, strongly influences glioma growth and therapeutic response. Therefore, our objective was to develop a Telomere-TME (TM-TME) classifier that integrates telomere-related genes and immune cell landscape to assess prognosis and therapeutic response in glioma. Methods: This study encompassed LGG patients from the TCGA and CCGA databases. TM score and TME score were derived from the expression signatures of telomere-related genes and the presence of immune cells in LGG, respectively. The TM-TME classifier was established by combining TM and TME scores to effectively predict prognosis. Subsequently, we conducted Kaplan-Meier survival estimation, univariate Cox regression analysis, and receiver operating characteristic curves to validate the prognostic prediction capacity of the TM-TME classifier across multiple cohorts. Gene Ontology (GO) analysis, biological processes, and proteomaps were performed to annotate the functional aspects of each subgroup and visualize the cellular signaling pathways. Results: The TM_low+TME_high subgroup exhibited superior prognosis and therapeutic response compared to other subgroups (P<0.001). This finding could be attributed to distinct tumor somatic mutations and cancer cellular signaling pathways. GO analysis indicated that the TM_low+TME_high subgroup is associated with the neuronal system and modulation of chemical synaptic transmission. Conversely, the TM_high+TME_low subgroup showed a strong association with cell cycle and DNA metabolic processes. Furthermore, the classifier significantly differentiated overall survival in the TCGA LGG cohort and served as an independent prognostic factor for LGG patients in both the TCGA cohort (P<0.001) and the CGGA cohort (P<0.001). Conclusion: Overall, our findings underscore the significance of the TM-TME classifier in predicting prognosis and immune therapeutic response in glioma, shedding light on the complex immune landscape within each subgroup. Additionally, our results suggest the potential of integrating risk stratification with precision therapy for LGG.


Assuntos
Glioma , Telômero , Adulto , Humanos , Prognóstico , Biomarcadores , Telômero/genética , Glioma/diagnóstico , Glioma/genética , Glioma/terapia , Sistema Nervoso Central , Microambiente Tumoral/genética
18.
J Cell Physiol ; 238(11): 2556-2569, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37698039

RESUMO

Family with sequence similarity 20-member C (FAM20C) is a kinase specific to most of the secreted phosphoproteome. FAM20C has been identified as the causative gene of Raine syndrome, initially characterized by lethal osteosclerosis bone dysplasia. However, since the identification of the cases of nonlethal Raine syndrome characterized by hypophosphatemia rickets, the previous definition of Raine syndrome has become debatable and raised a question about the role of mutations of FAM20C in controversial skeletal manifestation in the two forms of the disease. In this study, we aimed to investigate the influence of FAM20C mutations on skeletogenesis. We developed transgenic mice expressing Fam20c mutations mimicking those associated with human lethal and nonlethal Raine syndrome. The results revealed that transgenic mice expressing the mutant Fam20c found in the lethal (KO;G374R) and nonlethal (KO;D446N) Raine syndrome exhibited osteomalacia without osteosclerotic features. Additionally, both mutants significantly increased the expression of the Fgf23, indicating that Fam20c deficiency in skeletal compartments causes hypophosphatemia rickets. Furthermore, as FAM20C kinase activity catalyzes the phosphorylation of secreted proteomes other than those in the skeletal system, global FAM20C deficiency may trigger alterations in other systems resulting in osteosclerosis secondary to hypophosphatemia rickets. Together, the findings of this study suggest that FAM20C deficiency primarily causes hypophosphatemia rickets or osteomalacia; however, the heterogeneous skeletal manifestation in Raine syndrome was not determined solely by specific mutations of FAM20C. The findings also implicated that rickets or osteomalacia caused by FAM20C deficiency would deteriorate into osteosclerosis by the defects from other systems or environmental impacts.


Assuntos
Hipofosfatemia , Osteomalacia , Osteosclerose , Raquitismo , Camundongos , Animais , Humanos , Osteomalacia/complicações , Osteomalacia/genética , Osteosclerose/genética , Osteosclerose/complicações , Mutação/genética , Raquitismo/complicações , Camundongos Transgênicos , Hipofosfatemia/genética , Hipofosfatemia/complicações , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Proteínas de Ligação ao Cálcio/genética
19.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(2): 139-147, 2023 Apr 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37283097

RESUMO

OBJECTIVES: To construct a prognosis risk model based on long noncoding RNAs (lncRNAs) related to cuproptosis and to evaluate its application in assessing prognosis risk of bladder cancer patients. METHODS: RNA sequence data and clinical data of bladder cancer patients were downloaded from the Cancer Genome Atlas database. The correlation between lncRNAs related to cuproptosis and bladder cancer prognosis was analyzed with Pearson correlation analysis, univariate Cox regression, Lasso regression, and multivariate Cox regression. Then a cuproptosis-related lncRNA prognostic risk scoring equation was constructed. Patients were divided into high-risk and low-risk groups based on the median risk score, and the immune cell abundance between the two groups were compared. The accuracy of the risk scoring equation was evaluated using Kaplan-Meier survival curves, and the application of the risk scoring equation in predicting 1, 3 and 5-year survival rates was evaluated using receiver operating characteristic (ROC) curves. Univariate and multivariate Cox regression were used to screen for prognostic factors related to bladder cancer patients, and a prognostic risk assessment nomogram was constructed, the accuracy of which was evaluated with calibration curves. RESULTS: A prognostic risk scoring equation for bladder cancer patients was constructed based on nine cuproptosis-related lncRNAs. Immune infiltration analysis showed that the abundances of M0 macrophages, M1 macrophages, M2 macrophages, resting mast cells and neutrophils in the high-risk group were significantly higher than those in the low-risk group, while the abundances of CD8+ T cells, helper T cells, regulatory T cells and plasma cells in the low-risk group were significantly higher than those in the high-risk group (all P<0.05). Kaplan-Meier survival curve analysis showed that the total survival and progression-free survival of the low-risk group were longer than those of the high-risk group (both P<0.01). Univariate and multivariate Cox analysis showed that the risk score, age and tumor stage were independent factors for patient prognosis. The ROC curve analysis showed that the area under the curve (AUC) of the risk score in predicting 1, 3 and 5-year survival was 0.716, 0.697 and 0.717, respectively. When combined with age and tumor stage, the AUC for predicting 1-year prognosis increased to 0.725. The prognostic risk assessment nomogram for bladder cancer patients constructed based on patient age, tumor stage, and risk score had a prediction value that was consistent with the actual value. CONCLUSIONS: A bladder cancer patient prognosis risk assessment model based on cuproptosis-related lncRNA has been successfully constructed in this study. The model can predict the prognosis of bladder cancer patients and their immune infiltration status, which may also provide a reference for tumor immunotherapy.


Assuntos
Apoptose , RNA Longo não Codificante , Neoplasias da Bexiga Urinária , Humanos , Linfócitos T CD8-Positivos , Prognóstico , RNA Longo não Codificante/genética , Bexiga Urinária , Neoplasias da Bexiga Urinária/genética , Cobre
20.
Molecules ; 28(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37375220

RESUMO

Electrochemical reduction of nitrate has broad application prospects. However, in traditional electrochemical reduction of nitrate, the low value of oxygen produced by the anodic oxygen evolution reaction and the high overpotential limit its application. Seeking a more valuable and faster anodic reaction to form a cathode-anode integrated system with nitrate reaction can effectively accelerate the reaction rate of the cathode and anode, and improve the utilization of electrical energy. Sulfite, as a pollutant after wet desulfurization, has faster reaction kinetics in its oxidation reaction compared to the oxygen evolution reaction. Therefore, this study proposes an integrated cathodic nitrate reduction and anodic sulfite oxidation system. The effect of operating parameters (cathode potential, initial NO3--N concentration, and initial SO32--S concentration) on the integrated system was studied. Under the optimal operating parameters, the nitrate reduction rate in the integrated system reached 93.26% within 1 h, and the sulfite oxidation rate reached 94.64%. Compared with the nitrate reduction rate (91.26%) and sulfite oxidation rate (53.33%) in the separate system, the integrated system had a significant synergistic effect. This work provides a reference for solving nitrate and sulfite pollution, and promotes the application and development of electrochemical cathode-anode integrated technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...